Answer
$ a.\quad m\displaystyle \frac{dv}{dt}=mg-kv^{2}, \quad v=0$ when $ t=0.\quad$ (shown below)
$b.\quad\sqrt{\dfrac{mg}{k}}$
$ c.\quad\approx 178.89$ ft/sec
Work Step by Step
$ a.\quad$
$v=\sqrt{\frac{mg}{k}}\tanh(\sqrt{\frac{gk}{m}}\cdot t)$
Use the table of derivatives, and the chain rule do find $\displaystyle \frac{dv}{dt}$
Variables or constants that are not $t$, are constants in the derivation.
$\displaystyle \frac{dv}{dt}=\sqrt{\frac{mg}{k}}\cdot{\rm sech}^{2}(\sqrt{\frac{gk}{m}}t)\cdot(\sqrt{\frac{gk}{m}})=g\cdot{\rm sech}^{2}(\sqrt{\frac{gk}{m}}t)$
$m\displaystyle \frac{dv}{dt}=mg\cdot{\rm sech}^{2}(\sqrt{\frac{gk}{m}}t)$
Apply the identity: $\quad \tanh^{2}x=1-{\rm sech}^{2}x$
$m\displaystyle \frac{dv}{dt}=mg\cdot[1- \tanh^{2}x(\sqrt{\frac{gk}{m}}t)]$
$m\displaystyle \frac{dv}{dt}=mg-mg[\tanh^{2}(\sqrt{\frac{gk}{m}}t)]$
The second term is similar to:
$v^{2}=\displaystyle \frac{mg}{k}\tanh^{2}(\sqrt{\frac{gk}{m}}t)$
Thus:
$m\displaystyle \frac{dv}{dt}=mg-k\cdot\frac{mg}{k}[\tanh^{2}(\sqrt{\frac{gk}{m}}t)]$
$m\displaystyle \frac{dv}{dt}=mg-kv^{2}$
Which we needed to show
When $t=0$
$v=\sqrt{\frac{mg}{k}}\tanh(0)$,
and, $\displaystyle \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\Rightarrow\tanh 0=\frac{1-1}{1+1}=0$
So, $v=0$ when $t=0.$
$ b.\quad$
$\displaystyle \lim_{t\rightarrow\infty}v=\lim_{t\rightarrow\infty}\sqrt{\frac{mg}{k}}\tanh(\sqrt{\frac{kg}{m}}t)$
$=\displaystyle \sqrt{\frac{mg}{k}}\lim_{t\rightarrow\infty}\tanh(\sqrt{\frac{kg}{m}}t)$
$\displaystyle \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\qquad $
dividing the numerator and denominator with $e^{x}$ gives:
$\displaystyle \tanh x=\frac{1-e^{-2x}}{1+e^{-2x}}\qquad ... e^{-2x}\rightarrow 0$ when $ x\rightarrow\infty$
so the above limit exists and equals 1
$\displaystyle \lim_{t\rightarrow\infty}v=\sqrt{\frac{mg}{k}}(1)$
$\displaystyle \lim_{t\rightarrow\infty}v=\sqrt{\frac{mg}{k}}$
$ c.\quad$
Substitute $mg$ with $160$, and $k $ with $0.005$
$\sqrt{\dfrac{160}{0.005}}=\sqrt{\dfrac{160,000}{5}}$
$=\displaystyle \frac{400}{\sqrt{5}}=80\sqrt{5}$
$\approx178.89$ ft/sec