Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 431: 77

Answer

$ a.\quad m\displaystyle \frac{dv}{dt}=mg-kv^{2}, \quad v=0$ when $ t=0.\quad$ (shown below) $b.\quad\sqrt{\dfrac{mg}{k}}$ $ c.\quad\approx 178.89$ ft/sec

Work Step by Step

$ a.\quad$ $v=\sqrt{\frac{mg}{k}}\tanh(\sqrt{\frac{gk}{m}}\cdot t)$ Use the table of derivatives, and the chain rule do find $\displaystyle \frac{dv}{dt}$ Variables or constants that are not $t$, are constants in the derivation. $\displaystyle \frac{dv}{dt}=\sqrt{\frac{mg}{k}}\cdot{\rm sech}^{2}(\sqrt{\frac{gk}{m}}t)\cdot(\sqrt{\frac{gk}{m}})=g\cdot{\rm sech}^{2}(\sqrt{\frac{gk}{m}}t)$ $m\displaystyle \frac{dv}{dt}=mg\cdot{\rm sech}^{2}(\sqrt{\frac{gk}{m}}t)$ Apply the identity: $\quad \tanh^{2}x=1-{\rm sech}^{2}x$ $m\displaystyle \frac{dv}{dt}=mg\cdot[1- \tanh^{2}x(\sqrt{\frac{gk}{m}}t)]$ $m\displaystyle \frac{dv}{dt}=mg-mg[\tanh^{2}(\sqrt{\frac{gk}{m}}t)]$ The second term is similar to: $v^{2}=\displaystyle \frac{mg}{k}\tanh^{2}(\sqrt{\frac{gk}{m}}t)$ Thus: $m\displaystyle \frac{dv}{dt}=mg-k\cdot\frac{mg}{k}[\tanh^{2}(\sqrt{\frac{gk}{m}}t)]$ $m\displaystyle \frac{dv}{dt}=mg-kv^{2}$ Which we needed to show When $t=0$ $v=\sqrt{\frac{mg}{k}}\tanh(0)$, and, $\displaystyle \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\Rightarrow\tanh 0=\frac{1-1}{1+1}=0$ So, $v=0$ when $t=0.$ $ b.\quad$ $\displaystyle \lim_{t\rightarrow\infty}v=\lim_{t\rightarrow\infty}\sqrt{\frac{mg}{k}}\tanh(\sqrt{\frac{kg}{m}}t)$ $=\displaystyle \sqrt{\frac{mg}{k}}\lim_{t\rightarrow\infty}\tanh(\sqrt{\frac{kg}{m}}t)$ $\displaystyle \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\qquad $ dividing the numerator and denominator with $e^{x}$ gives: $\displaystyle \tanh x=\frac{1-e^{-2x}}{1+e^{-2x}}\qquad ... e^{-2x}\rightarrow 0$ when $ x\rightarrow\infty$ so the above limit exists and equals 1 $\displaystyle \lim_{t\rightarrow\infty}v=\sqrt{\frac{mg}{k}}(1)$ $\displaystyle \lim_{t\rightarrow\infty}v=\sqrt{\frac{mg}{k}}$ $ c.\quad$ Substitute $mg$ with $160$, and $k $ with $0.005$ $\sqrt{\dfrac{160}{0.005}}=\sqrt{\dfrac{160,000}{5}}$ $=\displaystyle \frac{400}{\sqrt{5}}=80\sqrt{5}$ $\approx178.89$ ft/sec
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.