Answer
$2\pi$
Work Step by Step
We use the washer method (see graph below)
$V=\displaystyle \int_{a}^{b}\pi([R(x)]^{2}-[r(x)]^{2})dx$
$V=\displaystyle \pi\int_{0}^{2}(\cosh^{2}x-\sinh^{2}x)dx$
Apply the identity: $\qquad \cosh^{2}x-\sinh^{2}x=1$
$=\displaystyle \pi\int_{0}^{2}1dx$
$=\pi[x]_{2}^{0}$
$=2\pi$