Answer
$\dfrac{2}{3}y^{\frac{3}{2}}-\sqrt x=C$
Work Step by Step
As we are given that $2 \sqrt{xy} \dfrac{dy}{dx}=1$
Thus, $\sqrt y dy=\dfrac{dx}{(2 \sqrt x)}$
Need to integrate the above expression, that is, $\sqrt y dy=\dfrac{dx}{(2 \sqrt x)}$.
Thus, $\int \sqrt y dy= \int \dfrac{dx}{2 \sqrt x}$
or, $\dfrac{2}{3}y^{\frac{3}{2}}=\sqrt x +C$
Hence, $\dfrac{2}{3}y^{\frac{3}{2}}-\sqrt x=C$