Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.4 - Exponential Change and Separable Differential Equations - Exercises 7.4 - Page 400: 16

Answer

$y = \ln \left( {\frac{1}{{C - {e^{\sin x}}}}} \right)$

Work Step by Step

$$\eqalign{ & \left( {\sec x} \right)\frac{{dy}}{{dx}} = {e^{y + \sin x}} \cr & {\text{First use the exponential property }}{e^{a + b}} = {e^a}{e^b}{\text{ to }}{e^{y + \sin x}} \cr & \left( {\sec x} \right)\frac{{dy}}{{dx}} = {e^y}{e^{\sin x}} \cr & {\text{Now}}{\text{, separate the variables}} \cr & \frac{{dy}}{{{e^y}}} = \frac{{{e^{\sin x}}}}{{\sec x}}dx \cr & {\text{Rewrite}} \cr & {e^{ - y}}dy = {e^{\sin x}}\cos xdx \cr & {\text{Integrate both sides of the equation}} \cr & \int {{e^{ - y}}} dy = \int {{e^{\sin x}}\cos } xdx \cr & - {e^{ - y}} = {e^{\sin x}} + C_1 \cr & {e^{ - y}} = C - {e^{\sin x}} \cr & {\text{Solve for }}y,{\text{ take the natural logarithm on both sides}} \cr & \ln {e^{ - y}} = \ln \left( {C - {e^{\sin x}}} \right) \cr & - y = \ln \left( {C - {e^{\sin x}}} \right) \cr & y = - \ln \left( {C - {e^{\sin x}}} \right) \cr & or \cr & y = \ln \left( {\frac{1}{{C - {e^{\sin x}}}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.