Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.4 - Exponential Change and Separable Differential Equations - Exercises 7.4 - Page 400: 14

Answer

$$y = {\left( {\frac{3}{2}\sqrt {2x} + C} \right)^{2/3}}$$

Work Step by Step

$$\eqalign{ & \sqrt {2xy} \frac{{dy}}{{dx}} = 1 \cr & {\text{Use the radical property }}\sqrt {ab} = \sqrt a \sqrt b \cr & \sqrt {2x} \sqrt y \frac{{dy}}{{dx}} = 1 \cr & {\text{Separate the variables}} \cr & \sqrt y dy = \frac{1}{{\sqrt {2x} }}dx \cr & {y^{1/2}}dy = \frac{1}{{\sqrt 2 {x^{1/2}}}}dx \cr & {y^{1/2}}dy = \frac{1}{{\sqrt 2 }}{x^{ - 1/2}}dx \cr & {\text{Integrate both sides of the equation}} \cr & \frac{{{y^{3/2}}}}{{3/2}} = \frac{1}{{\sqrt 2 }}\left( {\frac{{{x^{1/2}}}}{{1/2}}} \right) + C \cr & {\text{Simplify}} \cr & \frac{2}{3}{y^{3/2}} = \sqrt 2 \sqrt x + C \cr & \frac{2}{3}{y^{3/2}} = \sqrt {2x} + C \cr & {\text{Solve for }}y \cr & {y^{3/2}} = \frac{3}{2}\sqrt {2x} + C \cr & y = {\left( {\frac{3}{2}\sqrt {2x} + C} \right)^{2/3}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.