Answer
$\dfrac{x^{2}}{2}-2x -\ln |y+3|= c$
Work Step by Step
Rewrite the given equation and then integrate.
We have $ \int \dfrac{dy}{dx}=\int (x-2)(y+3)$
or, $\int (x-2) dx = \int \dfrac{dy}{y+3}$
Now, we get
$(\dfrac{1}{2})x^{2}-2x =\ln |y+3| +c$
Hence, $\dfrac{x^{2}}{2}-2x -\ln |y+3|= c$