Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.4 - Exponential Change and Separable Differential Equations - Exercises 7.4 - Page 400: 21

Answer

$4\ln|{\sqrt y+2}|$ = ${(e^{x^{2}})}+C$

Work Step by Step

$\frac{1}{x}\frac{dy}{dx}$ = $ye^{x^{2}}+2\sqrt{y}e^{x^{2}}$ $\frac{1}{x}\frac{dy}{dx}$ = $e^{x^{2}}(y+2\sqrt {y})$ $\frac{1}{y+2\sqrt {y}}dy$ = $xe^{x^{2}}dx$ $\frac{1}{\sqrt {y}(\sqrt y+2})dy$ = $xe^{x^{2}}dx$ $\int(\frac{1}{\sqrt {y}(\sqrt y+2}))dy$ = $\int(xe^{x^{2}})dx$ $u$ = $\sqrt y+2$ $du$ = $\frac{1}{2\sqrt y}dy$ $2du$ = $\frac{1}{\sqrt y}dy$ $z$ = $x^{2}$ $dz$ = $2xdx$ $\frac{1}{2}dz$ = $xdx$ $\int(\frac{2}{u})du$ = $\int{\frac{1}{2}(e^{z})}dz$ $2\ln|{u}|$ = ${\frac{1}{2}(e^{z})}+C_{1}$ $2\ln|{\sqrt y+2}|$ = ${\frac{1}{2}(e^{x^{2}})}+C_{1}$ $4\ln|{\sqrt y+2}|$ = ${(e^{x^{2}})}+2C_{1}$ $4\ln|{\sqrt y+2}|$ = ${(e^{x^{2}})}+C$ $C$ = $2C_{1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.