Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.4 - Exponential Change and Separable Differential Equations - Exercises 7.4 - Page 400: 5

Answer

$y'+y$ = $\frac{2}{1+4e^{2x}}$ and $y(-\ln2)$= $\frac{\pi}{2}$

Work Step by Step

$y$ = $e^{-x}tan^{-1}(2e^{x})$ $y'$ = $e^{-x}\frac{d}{dx}(tan^{-1}(2e^{x}))+tan^{-1}(2e^{x})\frac{d}{dx}(e^{-x})$ $y'$ = $\frac{e^{-x}}{1+4e^{2x}}-(e^{-x})tan^{-1}(2e^{x})$ $y'$ = $e^{-x}(\frac{2e^{x}}{1+4e^{2x}}-tan^{-1}(2e^{x}))$ $y'+y$ = $[e^{-x}(\frac{2e^{x}}{1+4e^{2x}}-tan^{-1}(2e^{x}))]+e^{-x}tan^{-1}(2e^{x})$ $y'+y$ = $e^{-x}[\frac{2e^{x}}{1+4e^{2x}}-tan^{-1}(2e^{x})+tan^{-1}(2e^{x})]$ $y'+y$ = $\frac{2}{1+4e^{2x}}$ $y(-\ln2)$= $e^{\ln2}tan^{-1}(2e^{-\ln2})$ $y(-\ln2)$= $2tan^{-1}(1)$ $y(-\ln2)$= $2(\frac{\pi}{4})$ $y(-\ln2)$= $\frac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.