Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 382: 74

Answer

$\pi\ln2$

Work Step by Step

$V$ = $\int_{{\,a}}^{{\,b}} A(x)$ $dx$ $V$ = $\int_{{\,\frac{\pi}{6}}}^{{\,\frac{\pi}{2}}}\pi(\sqrt{cot(x)})^{2}$ $dx$ $V$ = $\int_{{\,\frac{\pi}{6}}}^{{\,\frac{\pi}{2}}}\pi{cot(x)}$ $dx$ $V$ = $\int_{{\,\frac{\pi}{6}}}^{{\,\frac{\pi}{2}}}\pi{\frac{cos(x)}{sin(x)}}$ $dx$ $u$ = $sin(x)$ $du$ = $cos(x)$$dx$ so $V$ = $\pi\int{\frac{1}{u}}$ $du$ $V$ = $\pi\ln{u}$ $V$ = $\pi{\ln(sin(x))}$$|_{{\,\frac{\pi}{6}}}^{{\,\frac{\pi}{2}}}$ $V$ = $\pi[{\ln(sin(\frac{\pi}{2}))}-{\ln(sin(\frac{\pi}{6})}]$ $V$ = $\pi\ln2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.