Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 382: 84

Answer

$$ y = \ln |\sec x|+x$$

Work Step by Step

Given $$ \frac{d^2y}{dx^2}=\sec^2 x ,\ \ \ \ \ \ y(0)=0,\ \ \ \ y'(0)=1 $$ Then \begin{align*} y'&= \int \sec^2 x dx\\ &= \tan x +c \end{align*} At $x=0$ , $y'= 1 $, then $c=1 $ and $$ y' = \tan x+1 $$ Hence \begin{align*} y&= \int (\tan x+1) dx\\ &= \ln |\sec x|+x+c \end{align*} At $ x=0$, $y=0$, then $c=0$ and $$ y = \ln |\sec x|+x$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.