Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 382: 77

Answer

$a)$ $6+\ln{2}$ $b)$ $8+\ln{9}$

Work Step by Step

$a)$ $L$ = $\int_{{\,a}}^{{\,b}}\sqrt{1+(\frac{dy}{dx})^{2}}$ $dx$ $\frac{dy}{dx}$ = $\frac{x}{4}-\frac{1}{x}$ $L$ = $\int_{{\,4}}^{{\,8}}\sqrt{1+(\frac{x}{4}-\frac{1}{x})^{2}}$ $dx$ $L$ = $\int_{{\,4}}^{{\,8}}\sqrt{1+\frac{x}{16}^{2}-\frac{1}{2}+\frac{1}{x^{2}}}$ $dx$ $L$ = $\int_{{\,4}}^{{\,8}}\sqrt{\frac{x}{16}^{2}+\frac{1}{2}+\frac{1}{x^{2}}}$ $dx$ $L$ = $\int_{{\,4}}^{{\,8}}\sqrt{(\frac{x}{4}+\frac{1}{x})^{2}}$ $dx$ $L$ = $\int_{{\,4}}^{{\,8}}(\frac{x}{4}+\frac{1}{x})$ $dx$ $L$ = $\frac{x^{2}}{8}+\ln{x}$$|_{{\,4}}^{{\,8}}$ $L$ = $[(8+\ln{8})-(2+\ln4)]$ $L$ = $6+\ln{2}$ $b)$ $L$ = $\int_{{\,a}}^{{\,b}}\sqrt{1+(\frac{dx}{dy})^{2}}$ $dy$ $\frac{dx}{dy}$ = $\frac{y}{8}-\frac{2}{y}$ $L$ = $\int_{{\,4}}^{{\,12}}\sqrt{1+(\frac{y}{8}-\frac{2}{y})^{2}}$ $dy$ $L$ = $\int_{{\,4}}^{{\,12}}\sqrt{1+\frac{y}{64}^{2}-\frac{1}{2}+\frac{4}{y^{2}}}$ $dy$ $L$ = $\int_{{\,4}}^{{\,12}}\sqrt{\frac{y}{64}^{2}+\frac{1}{2}+\frac{4}{y^{2}}}$ $dy$ $L$ = $\int_{{\,4}}^{{\,12}}\sqrt{(\frac{y}{8}+\frac{2}{y})^{2}}$ $dy$ $L$ = $\int_{{\,4}}^{{\,12}}(\frac{y}{8}+\frac{2}{y})$ $dy$ $L$ = $\frac{y^{2}}{16}+2\ln{y}$$|_{{\,4}}^{{\,12}}$ $L$ = $[(9+2\ln{12})-(1+2\ln4)]$ $L$ = $8+\ln{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.