Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 441: 130

Answer

$$\ln \left| {\ln y} \right| = \arctan x + \ln 2$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{{y\ln y}}{{1 + {x^2}}},\,\,\,\,y\left( 0 \right) = {e^2} \cr & {\text{Separating variables gives}} \cr & \frac{{dy}}{{y\ln y}} = \frac{{dx}}{{1 + {x^2}}} \cr & {\text{Integrating both sides of the equation gives}} \cr & \int {\frac{{dy}}{{y\ln y}}} = \int {\frac{{dx}}{{1 + {x^2}}}} \cr & \int {\frac{1}{{\ln y}}\left( {\frac{1}{y}} \right)dy} = \int {\frac{1}{{1 + {x^2}}}} dx \cr & \ln \left| {\ln y} \right| = \arctan x + C \cr & {\text{Find }}C{\text{ by using the initial value }}y\left( 0 \right) = {e^2} \cr & \ln \left| {\ln {e^2}} \right| = \arctan 0 + C \cr & \ln 2 = C \cr & {\text{Then}}{\text{,}} \cr & \cr & \ln \left| {\ln y} \right| = \arctan x + \ln 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.