Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 441: 129

Answer

$$y = \ln \left( {2{e^{ - 2}} - {e^{ - x - 2}}} \right)$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = {e^{ - x - y - 2}},\,\,\,\,y\left( 0 \right) = - 2 \cr & {\text{Use exponential properties}} \cr & \frac{{dy}}{{dx}} = {e^{ - x - 2}}{e^{ - y}} \cr & {\text{separating variables gives}} \cr & \frac{{dy}}{{{e^{ - y}}}} = {e^{ - x - 2}}dx \cr & {e^y}dy = {e^{ - x - 2}}dx \cr & {\text{Integrating gives}} \cr & \int {{e^y}} dy = \int {{e^{ - x - 2}}} dx \cr & {e^y} = - {e^{ - x - 2}} + C \cr & {\text{Find }}C{\text{ by using the initial value }}y\left( 0 \right) = - 2 \cr & {e^{ - 2}} = - {e^{ - 0 - 2}} + C \cr & C = 2{e^{ - 2}} \cr & {\text{then}} \cr & {e^y} = - {e^{ - x - 2}} + 2{e^{ - 2}} \cr & y = \ln \left( {2{e^{ - 2}} - {e^{ - x - 2}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.