Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 441: 126

Answer

$$y - \ln \left| y \right| = {\left( {x + 1} \right)^3} + C$$

Work Step by Step

$$\eqalign{ & y' = \frac{{3y{{\left( {x + 1} \right)}^2}}}{{y - 1}} \cr & \frac{{dy}}{{dx}} = \frac{{3y{{\left( {x + 1} \right)}^2}}}{{y - 1}} \cr & {\text{Separating variables gives}} \cr & \frac{{y - 1}}{y}dy = 3{\left( {x + 1} \right)^2}dx \cr & \left( {1 - \frac{1}{y}} \right)dy = 3{\left( {x + 1} \right)^2}dx \cr & {\text{integrating}} \cr & \int {\left( {1 - \frac{1}{y}} \right)} dy = \int {3{{\left( {x + 1} \right)}^2}} dx \cr & y - \ln \left| y \right| = 3\left( {\frac{{{{\left( {x + 1} \right)}^3}}}{3}} \right) + C \cr & y - \ln \left| y \right| = {\left( {x + 1} \right)^3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.