Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 441: 125

Answer

$$2\tan \sqrt y = x + C$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \sqrt y {\cos ^2}\sqrt y \cr & {\text{Separating the variables gives}} \cr & \frac{{dy}}{{\sqrt y {{\cos }^2}\sqrt y }} = dx \cr & {\text{use the identity sec}}\theta = \frac{1}{{\cos \theta }} \cr & \frac{{{{\sec }^2}\sqrt y }}{{\sqrt y }}dy = dx \cr & {\text{integrating}} \cr & \int {\frac{{{{\sec }^2}\sqrt y }}{{\sqrt y }}} dy = \int {dx} \cr & 2\int {{{\sec }^2}\sqrt y \left( {\frac{1}{{2\sqrt y }}} \right)} dy = \int {dx} \cr & 2\tan \sqrt y = x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.