Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 441: 128

Answer

$$\frac{{{y^2}}}{2} = - \sec x + C$$

Work Step by Step

$$\eqalign{ & y{\cos ^2}xdy + \sin xdx = 0 \cr & {\text{Subtract }}\sin xdx \cr & y{\cos ^2}xdy = - \sin xdx \cr & {\text{Separating variables gives}} \cr & ydy = - \frac{{\sin x}}{{{{\cos }^2}x}}dx \cr & ydy = {\left( {\cos x} \right)^{ - 2}}\left( { - \sin x} \right)dx \cr & {\text{Integrating gives}} \cr & \int y dy = \int {{{\left( {\cos x} \right)}^{ - 2}}\left( { - \sin x} \right)} dx \cr & \frac{{{y^2}}}{2} = \frac{{{{\left( {\cos x} \right)}^{ - 1}}}}{{ - 1}} + C \cr & {\text{Simplifying gives}} \cr & \frac{{{y^2}}}{2} = - \sec x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.