Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 441: 127

Answer

$$\frac{1}{2}\sin {y^2} = \tan x + C$$

Work Step by Step

$$\eqalign{ & yy' = \sec {y^2}{\sec ^2}x \cr & y\frac{{dy}}{{dx}} = \sec {y^2}{\sec ^2}x \cr & {\text{Separating variables gives}} \cr & \frac{y}{{\sec {y^2}}}dy = {\sec ^2}xdx \cr & y\cos {y^2}dy = {\sec ^2}xdx \cr & {\text{Integrating, we get}} \cr & \int {y\cos {y^2}} dy = \int {{{\sec }^2}x} dx \cr & \frac{1}{2}\sin {y^2} = \tan x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.