Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 441: 118

Answer

$a)$ $\int_{{\,10}}^{{\,20}}$ $\frac{1}{x}$ $dx$ = $\int_{{\,1}}^{{\,2}}$ $\frac{1}{x}$ $dx$ = $\ln2$ $b)$ $\int_{{\,ka}}^{{\,kb}}$ $\frac{1}{x}$ $dx$ = $\int_{{\,a}}^{{\,b}}$ $\frac{1}{x}$ $dx$ = $\ln(\frac{b}{a})$

Work Step by Step

$a)$ $A$ = $\int_{{\,10}}^{{\,20}}$ $\frac{1}{x}$ $dx$ $A$ = $\ln{x}$ $|_{{\,10}}^{{\,20}}$ $A$ = $\ln20-\ln10$ = $\ln2$ $A$ = $\int_{{\,1}}^{{\,2}}$ $\frac{1}{x}$ $dx$ $A$ = $\ln{x}$ $|_{{\,1}}^{{\,2}}$ $A$ = $\ln2-\ln1$ = $\ln2$ $b)$ $A$ = $\int_{{\,ka}}^{{\,kb}}$ $\frac{1}{x}$ $dx$ $A$ = $\ln{x}$ $|_{{\,ka}}^{{\,kb}}$ $A$ = $\ln{kb}-\ln{ka}$ = $\ln(\frac{kb}{ka})$ = $\ln(\frac{b}{a})$ $A$ = $\int_{{\,a}}^{{\,b}}$ $\frac{1}{x}$ $dx$ $A$ = $\ln{x}$ $|_{{\,a}}^{{\,b}}$ $A$ = $\ln{b}-\ln{a}$ = $\ln(\frac{b}{a})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.