Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.9 - Linearization and Differentials - Exercises 3.9 - Page 175: 29

Answer

$a)$ $\Delta f=0.41$ $b)$ $df=0.4$ $c)$ $The\space approximation \space error =0.1$

Work Step by Step

$Given:$ $x^{2}$+$2x$ $,$ $x_{0}=1$ $and$ $dx=0.1$ $a)$ $since,$ $\Delta f=f(x_{0}+dx)-f(x_{0})$ $and$ $x_{0}+dx=1+0.1$ $\Rightarrow$ $\Delta f=[(1.1^{2})+2(1.1)]-[(1^{2})+2(1)]$ $\Rightarrow$ $\Delta f=[3.41]-[3]=0.41$ $\Rightarrow$ $\Delta f=0.41$ $b)$ $\because$ $df=\frac{df}{dx}\times{d x}$ $\frac{df}{dx}=2x+2$ $\Rightarrow$ $df= (2x_{0}+2)\times{dx}$ $\Rightarrow$ $df= (2(1)+2){0.1}$ $\Rightarrow$ $df= 0.4$ $c)$ $The\space approximation \space error=\mid \Delta f-df \mid $ $\Rightarrow$ $ \mid 0.41-0.4 \mid=0.1$ $Hence,$ $The\space approximation \space error \space is \space 0.1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.