Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.9 - Linearization and Differentials - Exercises 3.9 - Page 175: 27

Answer

$$\frac{3}{{\sqrt x }}\left[ {\csc \left( {1 - 2\sqrt x } \right)\cot \left( {1 - 2\sqrt x } \right)} \right]dx$$

Work Step by Step

$$\eqalign{ & y = 3\csc \left( {1 - 2\sqrt x } \right) \cr & {\text{Differentiate with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {3\csc \left( {1 - 2\sqrt x } \right)} \right] \cr & {\text{Recall that }}\frac{d}{{dx}}\left[ {\csc u} \right] = - \csc u\cot u\frac{{du}}{{dx}} \cr & \frac{{dy}}{{dx}} = - 3\csc \left( {1 - 2\sqrt x } \right)\cot \left( {1 - 2\sqrt x } \right)\frac{d}{{dx}}\left[ {1 - 2\sqrt x } \right] \cr & \frac{{dy}}{{dx}} = - 3\csc \left( {1 - 2\sqrt x } \right)\cot \left( {1 - 2\sqrt x } \right)\left( { - \frac{2}{{2\sqrt x }}} \right) \cr & \frac{{dy}}{{dx}} = - 3\csc \left( {1 - 2\sqrt x } \right)\cot \left( {1 - 2\sqrt x } \right)\left( { - \frac{1}{{\sqrt x }}} \right) \cr & \frac{{dy}}{{dx}} = \frac{{3\csc \left( {1 - 2\sqrt x } \right)\cot \left( {1 - 2\sqrt x } \right)}}{{\sqrt x }} \cr & {\text{Write in differential form}} \cr & dy = \frac{3}{{\sqrt x }}\left[ {\csc \left( {1 - 2\sqrt x } \right)\cot \left( {1 - 2\sqrt x } \right)} \right]dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.