Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.9 - Linearization and Differentials - Exercises 3.9 - Page 175: 21

Answer

$$dy = \frac{{1 - y}}{{3\sqrt y + x}}dx$$

Work Step by Step

$$\eqalign{ & 2{y^{3/2}} + xy - x = 0 \cr & {\text{Calculate }}\frac{{dy}}{{dx}}{\text{ by implicit differentiation}} \cr & \frac{d}{{dx}}\left[ {2{y^{3/2}}} \right] + \frac{d}{{dx}}\left[ {xy} \right] - \frac{d}{{dx}}\left[ x \right] = 0 \cr & 2\left( {\frac{3}{2}} \right){y^{1/2}}\frac{{dy}}{{dx}} + x\frac{{dy}}{{dx}} + y - 1 = 0 \cr & 3\sqrt y \frac{{dy}}{{dx}} + x\frac{{dy}}{{dx}} = 1 - y \cr & \left( {3\sqrt y + x} \right)\frac{{dy}}{{dx}} = 1 - y \cr & \frac{{dy}}{{dx}} = \frac{{1 - y}}{{3\sqrt y + x}} \cr & {\text{Write in differential form}} \cr & dy = \frac{{1 - y}}{{3\sqrt y + x}}dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.