Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.9 - Linearization and Differentials - Exercises 3.9 - Page 175: 22

Answer

$$dy = \frac{{6\sqrt x - {y^2}}}{{2xy - 1}}dx$$

Work Step by Step

$$\eqalign{ & x{y^2} - 4{x^{3/2}} - y = 0 \cr & {\text{Calculate }}\frac{{dy}}{{dx}}{\text{ by implicit differentiation}} \cr & \frac{d}{{dx}}\left[ {x{y^2}} \right] - \frac{d}{{dx}}\left[ {4{x^{3/2}}} \right] - \frac{d}{{dx}}\left[ y \right] = 0 \cr & x\frac{d}{{dx}}\left[ {{y^2}} \right] + {y^2}\left( 1 \right) - 6{x^{1/2}} - \frac{{dy}}{{dx}} = 0 \cr & 2xy\frac{{dy}}{{dx}} + {y^2} - 6\sqrt x - \frac{{dy}}{{dx}} = 0 \cr & 2xy\frac{{dy}}{{dx}} - \frac{{dy}}{{dx}} = 6\sqrt x - {y^2} \cr & \left( {2xy - 1} \right)\frac{{dy}}{{dx}} = 6\sqrt x - {y^2} \cr & \frac{{dy}}{{dx}} = \frac{{6\sqrt x - {y^2}}}{{2xy - 1}} \cr & {\text{Write in differential form}} \cr & dy = \frac{{6\sqrt x - {y^2}}}{{2xy - 1}}dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.