Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 989: 8

Answer

$ r(\phi, \theta)=(2\sqrt 2\sin \phi \cos \theta) i+( 2\sqrt 2 \sin \phi \sin \theta) j+(2\sqrt 2 \cos \phi) k $ and $0 \le \phi \le \dfrac{3 \pi}{4}$ and $0 \le \theta \le 2 \pi $

Work Step by Step

Use spherical coordinates as: $ x= P \sin \phi \cos \theta; y=Pl \sin \phi \sin \theta; z=Pl \cos \phi $ $0 \le \phi \le \pi; \\0 \le \theta \le 2 \pi $ We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ We have $ P=\sqrt{x^2+y^2+z^2} \implies P=2\sqrt 2$ $ x= 2\sqrt 2\sin \phi \cos \theta, y= 2\sqrt 2 \sin \phi \sin \theta, z= 2\sqrt 2 \cos \phi $ ; and $ r=(2\sqrt 2\sin \phi \cos \theta) i+( 2\sqrt 2 \sin \phi \sin \theta) j+(2\sqrt 2 \cos \phi) k \\ \implies -2 =2\sqrt 2 \cos \phi \\ \implies \phi=\dfrac{3 \pi}{4}$ Also, $2\sqrt 2 =2\sqrt 2 \cos \phi \\ \implies \phi=0$ Hence: $ r(\phi, \theta)=(2\sqrt 2\sin \phi \cos \theta) i+( 2\sqrt 2 \sin \phi \sin \theta) j+(2\sqrt 2 \cos \phi) k $ and $0 \le \phi \le \dfrac{3 \pi}{4}$ and $0 \le \theta \le 2 \pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.