Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 989: 7

Answer

$ r(u,v)=\lt \sqrt 3 \sin u \cos v,\sqrt 3 \sin u \sin v, \sqrt 3 \cos u \gt $ and $\dfrac{\pi}{3} \le u \le \dfrac{2\pi}{3};\\0 \le v \le 2 \pi $

Work Step by Step

Use spherical coordinates as: $ x= l \sin \phi \cos \theta; y= l \sin \phi \sin \theta; z= l \cos \phi $ ; $0 \le \phi \le \pi; \\0 \le \theta \le 2 \pi $. We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ We have: $ x^2+y^2+z^2 =3$ $ x= \sqrt 3 \sin u \cos v, y= \sqrt 3 \sin u \sin v, z= \sqrt 3 \cos u $ So, $ r(u,v)=\lt \sqrt 3 \sin u \cos v,\sqrt 3 \sin u \sin v, \sqrt 3 \cos u \gt $ and $\dfrac{\pi}{3} \le u \le \dfrac{2\pi}{3};\\0 \le v \le 2 \pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.