Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 989: 12

Answer

$ r(u,v)=2 \cos v \space i+u \space j+2 \sin v \space k;\\ -2 \le u \le 2;\space \\ 0 \le v \le \pi $

Work Step by Step

Apply polar coordinates in $ xz $ plane. We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ We have $ x^2+z^2=4$ Now, $ r(x,z)=2 \cos \theta \space i+uj+2 \sin \theta \space k $ Consider $ y=u; \theta=v $ This yields: $ r(u,v)=2 \cos v \space i+u \space j+2 \sin v \space k $; $-2 \le u \le 2$ and $0 \le v \le \pi $ Hence: $ r(u,v)=2 \cos v \space i+u \space j+2 \sin v \space k;\\ -2 \le u \le 2;\space \\ 0 \le v \le \pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.