Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 989: 13

Answer

(a) $ r(u,v)=\lt u \cos v, u \sin v, 1-u \cos v-u \sin v\gt $ and $0 \le u \le 3$; $0 \le v \le 2\pi $ (b) $ r(u,v)=\lt 1-u \cos v-u \sin v, u \cos v, u \sin v\gt $ where $0 \le u \le 3$; $0 \le v \le 2\pi $

Work Step by Step

(a) Apply polar coordinates in the $ xz $ plane. We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ We have $ x^2+z^2=4$ and $ z=1-(x+y)$ Thus, $ x=r \cos \theta, y=r \sin \theta, z=z $ Hence: $ r(u,v)=\lt u \cos v, u \sin v, 1-u \cos v-u \sin v\gt $ where $0 \le u \le 3$; $0 \le v \le 2\pi $ (b) Apply polar coordinates in the $ xz $ plane. We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ We have $ y^2+z^2=9$ and $ x=1-(y+z)$ Thus, $ x=r \cos \theta, y=r \sin \theta, z=z $ Hence: $ r(u,v)=\lt 1-u \cos v-u \sin v, u \cos v, u \sin v\gt $ where $0 \le u \le 3$; $0 \le v \le 2\pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.