Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 989: 3

Answer

$ r(r, \theta)=(r \cos \theta) i+( r\sin \theta) j+(\dfrac{r}{2}) k $ and $0 \le r \le 6$; $0 \le \theta \le \dfrac{ \pi}{2}$

Work Step by Step

We have $ z=\dfrac{\sqrt{x^2+y^2}}{2} \implies z=\dfrac{\sqrt{r^2}}{2}=\dfrac{(r^{1/2})^2}{2}=\dfrac{r}{2}$ Now, $ r(r, \theta)=xi+yj+zk ;\\ r=(r \cos \theta) i+( r\sin \theta) j+(\dfrac{r}{2}) k $; and $0 \le z \le 3;\\ 0 \le \dfrac{r}{2} \le 3 \implies 0 \le r \le 6$ Hence, $ r(r, \theta)=(r \cos \theta) i+( r\sin \theta) j+(\dfrac{r}{2}) k $ and $0 \le r \le 6$; $0 \le \theta \le \dfrac{ \pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.