Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 989: 11

Answer

$ r(u,v)=xi+3 \cos u \space j+3 \sin v \space k; \\ 0 \le u \le 3$ and $0 \le v \le 2\pi $

Work Step by Step

Use spherical coordinates as: $ x= P \sin \phi \cos \theta; y=Pl \sin \phi \sin \theta; z=Pl \cos \phi $ $0 \le \phi \le \pi; \\0 \le \theta \le 2 \pi $ We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ We have $ y^2+z^2=9$ Now, $ r(u,v)=xi+(3 \cos u)j+(3 \sin v)k $; and $ y^2+z^2=9 ;\\ 0 \le u \le 3 \space $ and $\space 0 \le v \le 2\pi $ Hence: $ r(u,v)=xi+3 \cos u \space j+3 \sin v \space k; \\ 0 \le u \le 3$ and $0 \le v \le 2\pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.