Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 989: 5

Answer

$ r=(r \cos \theta) i+( r\sin \theta) j+\sqrt {9-r^2} k $ and $0 \le r \le \dfrac{3}{\sqrt{2}}$ and $0 \leq \theta \leq 2 \pi $

Work Step by Step

Apply cylindrical coordinates. $ x=r \cos \theta ;\\ y= r \sin \theta ;\\ z \gt 0$ We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ We have $9=x^2+y^2+z^2 ;\\ z =\sqrt {9-r^2}$ and $ z \geq 0$ Now, $ r=(r \cos \theta) i+( r\sin \theta) j+\sqrt {9-r^2} k $; or, $9=x^2+y^2+(\sqrt {x^2+y^2})^2 \implies 2(x^2+y^2)=9$ $2r^2 =9 $ and $ r=\dfrac{3}{\sqrt{2}}$ Thus, $0 \le r \le \dfrac{3}{\sqrt{2}}$ And $0 \leq \theta \leq 2 \pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.