Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 0 - Section 0.6 - Solving Miscellaneous Equations - Exercises - Page 34: 18

Answer

$$x = 0,{\text{ }}x = \root 3 \of 4 $$

Work Step by Step

$$\eqalign{ & \frac{{4x\sqrt {{x^3} - 1} - \frac{{3{x^4}}}{{\sqrt {{x^3} - 1} }}}}{{{x^3} - 1}} = 0 \cr & {\text{Multiply the numerator and denominator by }}\sqrt {{x^3} - 1} \cr & \frac{{4x{{\left( {\sqrt {{x^3} - 1} } \right)}^2} - \frac{{3{x^4}\sqrt {{x^3} - 1} }}{{\sqrt {{x^3} - 1} }}}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }} = 0 \cr & {\text{Simplify}} \cr & \frac{{4x\left( {{x^3} - 1} \right) - 3{x^4}}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }} = 0 \cr & \frac{{4{x^4} - 4x - 3{x^4}}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }} = 0 \cr & \frac{{{x^4} - 4x}}{{\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} }} = 0 \cr & {\text{Cross product}} \cr & {x^4} - 4x = 0 \cr & x\left( {{x^3} - 4} \right) = 0 \cr & {\text{Zero - factor property}} \cr & x = 0,{\text{ }}{x^3} - 4 = 0 \cr & x = 0,{\text{ }}x = \root 3 \of 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.