Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.3 Higher Derivatives, Concavity, and the Second Derivative Test - 5.3 Exercises - Page 284: 64

Answer

$$ f(x)=x^{\frac{8}{3}}+x^{\frac{5}{3}} $$ critical numbers are: $\frac{-5}{8}$ and $0$. By Part 2 of the second derivative test, $\frac{-5}{8}$ leads to a relative minimum. by the first derivative test, Neither a relative minimum or maximum occurs at $0$.

Work Step by Step

$$ f(x)=x^{\frac{8}{3}}+x^{\frac{5}{3}} $$ First, find the points where the derivative is $0$ Here $$ \begin{aligned} f^{\prime}(x) &=(\frac{8}{3})x^{\frac{5}{3}}+ (\frac{5}{3})x^{\frac{2}{3}}\\ &=\frac{x^{\frac{5}{3}}}{3}(8x+5) \end{aligned} $$ Solve the equation $f^{\prime}(x)=0 $ to get $$ \begin{aligned} f^{\prime}(x)& =\frac{x^{\frac{5}{3}}}{3}(8x+5)=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 8x+5 =0 \quad &\text {or} \quad x =0 \\ \\ \Rightarrow\quad\quad\quad\quad\quad\\ 8x =-5 \quad &\text {or} \quad x =0 \\ \Rightarrow\quad\quad\quad\quad\quad\\ x =\frac{-5}{8} \quad &\text {or} \quad x =0 \\ \end{aligned} $$ critical numbers are: $\frac{-5}{8}$ and $0$. Now use the second derivative test. The second derivative is $$ \begin{aligned} f^{\prime\prime}(x)&=\frac{8}{3} (\frac{5}{3})x^{\frac{2}{3}}+ \frac{5}{3} (\frac{2}{3})x^{\frac{-1}{3}} \\ &=\frac{40}{9} x^{\frac{2}{3}}+ \frac{10}{9}x^{\frac{-1}{3}}. \end{aligned} $$ Evaluate $f^{\prime\prime}(x)$ first at $x=\frac{-5}{8}$, getting $$ \begin{aligned} f^{\prime\prime}(\frac{-5}{8})&=\frac{40}{9} (\frac{-5}{8})^{\frac{2}{3}}+ \frac{10}{9}(\frac{-5}{8})^{\frac{-1}{3}}\\ &=\frac{2\cdot \:5^{\frac{2}{3}}}{3}\\ & \approx 1.94934 \gt 0 \end{aligned} $$ so that by Part 1 of the second derivative test, $\frac{-5}{8}$ leads to a relative minimum. Now, evaluate $f^{\prime\prime}(x)$ at $x=0$, getting $$ \begin{aligned} f^{\prime\prime}(0)&=\frac{40}{9} (0)^{\frac{2}{3}}+ \frac{10}{9}(0)^{\frac{-1}{3}}\\ & f^{\prime\prime} \text{ does not exist} \end{aligned} $$ so the test gives no information about extrema, we can use the first derivative test. Check the sign of $f^{\prime}(x)$ in the intervals $$ (\frac{-5}{8}, 0 ), \quad (0,\infty). $$ (1) Test a number in the interval $(\frac{-5}{8}, 0 )$ say $\frac{-1}{2}$: $$ \begin{aligned} f^{\prime}(\frac{-1}{2}) &=(\frac{8}{3})(\frac{-1}{2})^{\frac{5}{3}}+ (\frac{5}{3})(\frac{-1}{2})^{\frac{2}{3}} \\ &=\frac{1}{3\cdot \:2^{\frac{2}{3}}}\\ &\approx 0.20998 \end{aligned} $$ to see that $ f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(\frac{-5}{8}, 0 )$ (2) Test a number in the interval $(0, \infty )$ say $1$: $$ \begin{aligned} f^{\prime}(1) &=(\frac{8}{3})(1)^{\frac{5}{3}}+ (\frac{5}{3})(1)^{\frac{2}{3}} \\ &=\frac{13}{3}\\ &\approx 4.33333 \end{aligned} $$ to see that $ f^{\prime}(x)$ is positive in that interval, so $f(x)$ is also increasing on $(0, \infty ).$ So that by the first derivative test, Neither a relative minimum or maximum occurs at $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.