Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.3 Higher Derivatives, Concavity, and the Second Derivative Test - 5.3 Exercises - Page 284: 39

Answer

$$ f(x)=x(x+5)^{2} $$ $f(x)$ concave upward on $$(\frac{ -10}{3},\infty )$$. $f(x)$ concave downward on $$(-\infty , \frac{ -10}{3}).$$ Inflection point at $$(\frac{ -10}{3} , \frac{ -250}{27})$$

Work Step by Step

$$ f(x)=x(x+5)^{2} $$ Rewrite the function $f(x)$ as $$ f(x)=x(x^{2}+10x+25)=x^{3}+10x^{2}+25x $$ The first derivative is $$ \begin{aligned} f^{\prime}(x) &=(3)x^{2}+10(2)x+25 \\ &=3x^{2}+20x+25 , \end{aligned} $$ and the second derivative is $$ \begin{aligned} f^{\prime\prime}(x) &=3(2)x+20+0\\ &=6x+20 \end{aligned} $$ A function $f$ is concave upward on an interval if $f^{\prime\prime}(x) \gt 0$ for all $x$ in the interval, so $$ \begin{aligned} f^{\prime\prime}(x) =6x+20 & \gt 0 \\ 6x & \gt -20\\ x & \gt \frac{ -20}{6}= \frac{ -10}{3} \end{aligned} $$ so $f(x)$ is concave upward on $(\frac{ -10}{3},\infty )$. Also function $f$ is concave downward on an interval if $f^{\prime\prime}(x) \lt 0$ for all $x$ in the interval, so $$ \begin{aligned} f^{\prime\prime}(x) =6x+20 & \lt 0 \\ 6x & \lt -20\\ x &\lt \frac{ -20}{6}= \frac{ -10}{3} \end{aligned} $$ so $f(x)$ is concave downward on $(-\infty , \frac{ -10}{3})$. Since the sign of $f^{\prime\prime}(x)$ changes from positive to negative at $\frac{ -10}{3} $, the graph changes from concave upward to concave downward at that point, so $(\frac{ -10}{3} , f(\frac{ -10}{3}))$ is inflection point. Now ,we find $ f(\frac{ -10}{3})$as follows: $$ \begin{aligned} f(\frac{ -10}{3}) &=(\frac{ -10}{3})((\frac{ -10}{3})+5)^{2}\\ &=(\frac{ -10}{3})(\frac{ -10+15}{3})^{2}\\ &=(\frac{ -10}{3})(\frac{ 25}{9})\\ &=\frac{ -250}{27} \end{aligned} $$ Finally, we have inflection point at $(\frac{ -10}{3}, f(-4))=(\frac{ -10}{3} , \frac{ -250}{27})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.