Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.3 Higher Derivatives, Concavity, and the Second Derivative Test - 5.3 Exercises - Page 284: 63

Answer

$$ f(x)=x^{\frac{7}{3}}+x^{\frac{4}{3}} $$ critical numbers are: $\frac{-4}{7}$ and $0$. By Part 2 of the second derivative test, $\frac{-4}{7}$ leads to a relative maximum. By using the first derivative test, $0$ leads to a relative minimum.

Work Step by Step

$$ f(x)=x^{\frac{7}{3}}+x^{\frac{4}{3}} $$ First, find the points where the derivative is $0$ Here $$ \begin{aligned} f^{\prime}(x) &=(\frac{7}{3})x^{\frac{4}{3}}+ (\frac{4}{3})x^{\frac{1}{3}}\\ &=\frac{x^{\frac{1}{3}}}{3}(7x+4) \end{aligned} $$ Solve the equation $f^{\prime}(x)=0 $ to get $$ \begin{aligned} f^{\prime}(x)& =\frac{x^{\frac{1}{3}}}{3}(7x+4)=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 7x+4 =0 \quad &\text {or} \quad x =0 \\ \\ \Rightarrow\quad\quad\quad\quad\quad\\ 7x =-4 \quad &\text {or} \quad x =0 \\ \Rightarrow\quad\quad\quad\quad\quad\\ x =\frac{-4}{7} \quad &\text {or} \quad x =0 \\ \end{aligned} $$ critical numbers are: $\frac{-4}{7}$ and $0$. Now use the second derivative test. The second derivative is $$ \begin{aligned} f^{\prime\prime}(x)&=\frac{7}{3} (\frac{4}{3})x^{\frac{1}{3}}+ \frac{4}{3} (\frac{1}{3})x^{\frac{-2}{3}} \\ &=\frac{28}{9} x^{\frac{1}{3}}+ \frac{4}{9}x^{\frac{-2}{3}}. \end{aligned} $$ Evaluate $f^{\prime\prime}(x)$ first at $x=\frac{-4}{7}$, getting $$ \begin{aligned} f^{\prime\prime}(\frac{-4}{7})&=\frac{28}{9} (\frac{-4}{7})^{\frac{1}{3}}+ \frac{4}{9}(\frac{-4}{7})^{\frac{-2}{3}}\\ &=-\frac{4^{\frac{1}{3}}\cdot \:7^{\frac{2}{3}}}{3}\\ & \approx -1.93626 \lt 0 \end{aligned} $$ so that by Part 2 of the second derivative test, $\frac{-4}{7}$ leads to a relative maximum. Now, evaluate $f^{\prime\prime}(x)$ at $x=0$, getting $$ \begin{aligned} f^{\prime\prime}(0)&=\frac{28}{9} (0)^{\frac{1}{3}}+ \frac{4}{9}(0)^{\frac{-2}{3}}\\ &=0 \end{aligned} $$ then the test gives no information about extrema, so we can use the first derivative test. Check the sign of $f^{\prime}(x)$ in the intervals $$ (\frac{-4}{7}, 0 ), \quad (0,\infty). $$ (1) Test a number in the interval $(\frac{-4}{7}, 0 )$ say $\frac{-1}{2}$: $$ \begin{aligned} f^{\prime}(\frac{-1}{2}) &=(\frac{7}{3})(\frac{-1}{2})^{\frac{4}{3}}+ (\frac{4}{3})(\frac{-1}{2})^{\frac{1}{3}}\\ &=-\frac{1}{6\cdot \:2^{\frac{1}{3}}} \\ &\approx -0.13228 \end{aligned} $$ to see that $ f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(\frac{-4}{7}, 0 )$ (2) Test a number in the interval $(0, \infty )$ say $1$: $$ \begin{aligned} f^{\prime}(1) &=(\frac{7}{3})(1)^{\frac{4}{3}}+ (\frac{4}{3})(1)^{\frac{1}{3}}\\ &=\frac{11}{3} \\ &\approx 3.6666 \end{aligned} $$ to see that $ f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(0, \infty ).$ So that by the first derivative test, $0$ leads to a relative minimum.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.