Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.3 Higher Derivatives, Concavity, and the Second Derivative Test - 5.3 Exercises - Page 284: 42

Answer

Concave upward on $$ (-\infty, -\frac{1}{\sqrt 2} ), \quad (\frac{1}{\sqrt 2}, \infty ), $$ concave downward on $$ ( -\frac{1}{\sqrt 2} ,\frac{1}{\sqrt 2} ) $$ inflection points at $$(-\frac{1}{\sqrt 2} , \frac{2}{\sqrt{e}}),\quad\quad (\frac{1}{\sqrt 2} , \frac{2}{\sqrt{e}}).$$

Work Step by Step

$$ f(x)=2e^{-x^{2}} $$ The first derivative is $$ \begin{aligned} f^{\prime}(x) &=2(-2x)e^{-x^{2}}\\ &=-4xe^{-x^{2}} , \end{aligned} $$ and the second derivative is $$ \begin{aligned} f^{\prime\prime}(x) &=-4x((-2x)e^{-x^{2}})-4e^{-x^{2}}(1) ,\\ &=8x^{2}e^{-x^{2}}-4e^{-x^{2}}\\ &=[2x^{2}-1]4e^{-x^{2}} \end{aligned} $$ We factor $f^{\prime\prime}(x)$ as $$ \begin{aligned} f^{\prime\prime}(x) &=[(\sqrt {2}x-1)(\sqrt {2}x+1)]4e^{-x^{2}} \end{aligned} $$ look for an $x$-value that makes $f^{\prime\prime}(x)=0$. Set $f^{\prime\prime}(x)$ equal to $0$ and solve for $x$. $$ \begin{aligned} f^{\prime\prime}(x) =[(\sqrt {2}x-1)(\sqrt {2}x+1)]4e^{-x^{2}}&=0 \\ x &=-\frac{1}{\sqrt 2}\quad\quad \text {or}\quad\quad x =\frac{1}{\sqrt 2} \end{aligned} $$ (1) Test a number in the interval $(-\infty, -\frac{1}{\sqrt 2} )$ say $ -2$ $$ \begin{aligned} f^{\prime\prime}(-2) & =[2(-2)^{2}-1]4e^{-(-2)^{2}}\\ &=\frac{28}{e^4} \\ &\gt0 \end{aligned} $$ to see that $ f^{\prime\prime}(x)$ is positive there, so $f(x)$ is concave upward on $(-\infty, -\frac{1}{\sqrt 2} )$. (2) Test a number in the interval $( -\frac{1}{\sqrt 2} ,\frac{1}{\sqrt 2} )$ say $ 0$ $$ \begin{aligned} f^{\prime\prime}(0) & =[2(0)^{2}-1]4e^{-(0)^{2}}\\ &=-4 \\ &\lt 0 \end{aligned} $$ to see that $ f^{\prime\prime}(x)$ is negative in that interval,, so $f(x)$ is concave downward on $( -\frac{1}{\sqrt 2} ,\frac{1}{\sqrt 2} )$ (3) Test a number in the interval $ (\frac{1}{\sqrt 2}, \infty )$ say $ 2$ $$ \begin{aligned} f^{\prime\prime}(2) & =[2(2)^{2}-1]4e^{-(2)^{2}}\\ &=\frac{28}{e^4} \\ &\gt0 \end{aligned} $$ to see that $ f^{\prime\prime}(x)$ is positive there, so $f(x)$ is concave upward on $ (\frac{1}{\sqrt 2}, \infty )$. Therefore, Concave upward on $$ (-\infty, -\frac{1}{\sqrt 2} ), (\frac{1}{\sqrt 2}, \infty ), $$ concave downward on $$ ( -\frac{1}{\sqrt 2} ,\frac{1}{\sqrt 2} ) $$ Since the sign of $f^{\prime\prime}(x)$ changes from positive to negative at $ -\frac{1}{\sqrt 2} $, the graph changes from concave upward to concave downward at that point, so $(-\frac{1}{\sqrt 2} , f(-\frac{1}{\sqrt 2})$ is inflection point. Also, the sign of $f^{\prime\prime}(x)$ changes from negative to positive at $ \frac{1}{\sqrt 2} $, the graph changes from concave downward to concave upward at that point, so $(\frac{1}{\sqrt 2} , f(\frac{1}{\sqrt 2})$ is inflection point. Now ,we find $f( -\frac{1}{\sqrt 2}), f(\frac{1}{\sqrt 2})$as follows: $$ f(-\frac{1}{\sqrt 2})=2e^{-(-\frac{1}{\sqrt 2})^{2}}=\frac{2}{\sqrt{e}}, $$ $$ f(\frac{1}{\sqrt 2})=2e^{-(\frac{1}{\sqrt 2})^{2}}=\frac{2}{\sqrt{e}} $$ Finally, we have inflection points at $(-\frac{1}{\sqrt 2} , \frac{2}{\sqrt{e}}), (\frac{1}{\sqrt 2} , \frac{2}{\sqrt{e}})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.