Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.3 Higher Derivatives, Concavity, and the Second Derivative Test - 5.3 Exercises - Page 284: 44

Answer

Concave upward on $$ (-8, \infty ) , $$ concave downward on $$ (-\infty, -8 ) $$ inflection point at $$(-8, 768).$$

Work Step by Step

$$ f(x)=x^{\frac{7}{3}}+56 x^{\frac{4}{3}} $$ The first derivative is $$ \begin{aligned} f^{\prime}(x) &=(\frac{7}{3})x^{\frac{4}{3}}+56(\frac{4}{3}) x^{\frac{1}{3}}\\ &=\frac{7}{3}x^{\frac{4}{3}}+\frac{224}{3} x^{\frac{1}{3}} , \end{aligned} $$ and the second derivative is $$ \begin{aligned} f^{\prime\prime}(x) &=\frac{7}{3} (\frac{4}{3})x^{\frac{1}{3}}+\frac{224}{3}(\frac{1}{3}) x^{\frac{-2}{3}} \\ &=\frac{28}{9} x^{\frac{1}{3}}+\frac{224}{9}x^{\frac{-2}{3}} \\ \end{aligned} $$ We factor $f^{\prime\prime}(x)$ as $$ \begin{aligned} f^{\prime\prime}(x) &=\frac{28}{9} x^{\frac{1}{3}}+\frac{224}{9}x^{\frac{-2}{3}}\\ &=\frac{28(x+8)}{9 x^{\frac{2}{3}}} \end{aligned} $$ look for an $x$-value that makes $f^{\prime\prime}(x)=0$. Set $f^{\prime\prime}(x)$ equal to $0$ and solve for $x$. $$ \begin{aligned} f^{\prime\prime}(x) =\frac{28(x+8)}{9 x^{\frac{2}{3}}}=0 \quad \text {when } \quad x=-8 \end{aligned} $$ but also where $f^{\prime\prime}(x)$ does not exist this happens at $x=0$. So Check the sign of $f^{\prime\prime}(x)$ in the three intervals $$ (-\infty, -8 ), \quad (-8,0), \quad (0,\infty). $$ (1) Test a number in the interval $(-\infty, -8 )$ say $ -27$ $$ \begin{aligned} f^{\prime\prime}(-27) &=\frac{28((-27)+8)}{9 (-27)^{\frac{2}{3}}} \\ &=\frac{28((-19)}{9 (9)} \\ &=\frac{-532}{81} \\ & \lt 0 \end{aligned} $$ to see that $ f^{\prime\prime}(x)$ is negative in that interval, so $f(x)$ is concave downward on $(-\infty, -8 )$ (2) Test a number in the interval $( -8,0) $ say $ -1$ $$ \begin{aligned} f^{\prime\prime}(-1) &=\frac{28((-1)+8)}{9 (-1)^{\frac{2}{3}}} \\ &=\frac{28((7)}{9 (1)} \\ &=\frac{196}{9} \\ & \gt 0 \end{aligned} $$ to see that $ f^{\prime\prime}(x)$ is positive there, so $f(x)$ is concave upward on $ (-8, 0 )$. (3) Test a number in the interval $ (0, \infty )$ say $ 1$ $$ \begin{aligned} f^{\prime\prime}(1) &=\frac{28((1)+8)}{9 (1)^{\frac{2}{3}}} \\ &=\frac{28((9)}{9 (1)} \\ &=28 \\ & \gt 0 \end{aligned} $$ to see that $ f^{\prime\prime}(x)$ is positive there, so $f(x)$ is concave upward on $ (0, \infty )$. Therefore, the function $f$ is concave upward on $$ (-8, \infty ) $$ and concave downward on $$ ( -\infty,-8 ). $$ Since the sign of $f^{\prime\prime}(x)$ changes from negative to positive at $ x=-8 $, the graph changes from concave downward to concave upward at that point, so $(-8 , f(-8))$ is inflection point. Now ,we find $f( -8)$as follows: $$ f(-8)=(-8)^{\frac{7}{3}}+56 (-8)^{\frac{4}{3}}=-128+896=768 $$ Finally, we have inflection point at $(-8, 768).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.