Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.3 Higher Derivatives, Concavity, and the Second Derivative Test - 5.3 Exercises - Page 284: 46

Answer

Concave upward on $$ (-\infty, -3 ), \quad (1, \infty) , $$ concave downward on $$ (-3 , -1) , \quad (-1 , 1) $$ inflection points at $$ (-3,9+8 \ln 2 ), \quad (1, 2+8 \ln 2 ). $$

Work Step by Step

$$ f(x)=x^{2}+8 \ln |x+1| $$ The first derivative is $$ \begin{aligned} f^{\prime}(x) &=(2)x+\frac{8(1)}{(x+1) }\\ &=2x+\frac{8}{(x+1) } \end{aligned} $$ and the second derivative is $$ \begin{aligned} f^{\prime\prime}(x) &=2-\frac{8(1)}{(x+1)^{2}} \\ &=2-\frac{8}{(x+1)^{2}} \\ \end{aligned} $$ A function $f$ is concave upward on an interval if $f^{\prime\prime}(x) \gt 0$ for all $x$ in the interval, so $$ \begin{aligned} f^{\prime\prime}(x) &=2-\frac{8}{(x+1)^{2}} \gt 0 \\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ -\frac{8}{(x+1)^{2}} & \gt -2\\ 8 & \lt 2(x+1)^{2} \\ 4 & \lt (x+1)^{2} \\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ x+1 \lt -2 \quad\quad \text {and} & \quad\quad x+1 \gt 2\\ \Rightarrow \quad\quad\quad\quad\quad\quad\quad\quad\quad\\ x \lt -3 \quad\quad \text {and} & \quad\quad x \gt 1 \end{aligned} $$ so $f(x)$ is concave upward on $(-\infty, -3 ), \quad (1, \infty)$. Also function $f$ is concave downward on an interval if $f^{\prime\prime}(x) \lt 0$ for all $x$ in the interval, so $$ \begin{aligned} f^{\prime\prime}(x) &=2-\frac{8}{(x+1)^{2}} \lt 0 \\ \Rightarrow \quad\quad\quad\quad\quad\quad\quad\quad\quad\\ -\frac{8}{(x+1)^{2}} & \lt -2\\ 8 & \gt 2(x+1)^{2} \\ 4 & \gt (x+1)^{2} \\ \Rightarrow \quad\quad\quad\quad\quad\quad\quad\quad\quad\\ -2 \lt x+1 & \lt 2\\ \Rightarrow \quad\quad\quad\quad\quad\quad\quad\quad\quad\\ -3 \lt x & \lt 1\\ \end{aligned} $$ But $f(x)$ is not defined at $x=-1$, so $f(x)$ is concave downward on $(-3 , -1) $ and $(-1 , 1) $ . Since the sign of $f^{\prime\prime}(x)$ changes from positive to negative at $ -3 $, the graph changes from concave upward to concave downward at that point, so $(-3 , f(-3)$ is inflection point. Also, the sign of $f^{\prime\prime}(x)$ changes from negative to positive at $1 $, the graph changes from concave downward to concave upward at that point, so $(1 , f(1)$ is inflection point. Now ,we find $f( -3), f(1)$as follows: $$ f(-3)=-3^{2}+8 \ln |-3+1|=9+8 \ln |-2|=9+8 \ln 2,\\ f(1)=(1)^{2}+8 \ln |1+1|=2+8 \ln |2|=2+8 \ln 2, $$ Finally, we have inflection points at $$ (-3,9+8 \ln 2 ), \quad (1, 2+8 \ln 2 ). $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.