Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.3 - The Integral Test and Estimates of Sums - 11.3 Exercises - Page 726: 41

Answer

$n\gt 1.07\times 10^{11301}$ We need more than $10^{11301}$ terms.

Work Step by Step

$R_{n}\leq \int_{n}^{\infty}f(x) dx \lt 0.000000005$ $\lim\limits_{a \to \infty} \int_{n}^{a}x^{-1.001} dx\lt 0.000000005$ $\lim\limits_{a \to \infty}[-\frac{1}{-0.001}x^{-0.001}]_{n}^{a}\lt 0.000000005$ $\frac{1000}{n^{0.001}}\lt 0.000000005$ $n^{0.001}\gt \frac{1000}{0.000000005}$ $n\gt 1.07\times 10^{11301}$ Hence, it is proved we need more than $10^{11301}$ terms.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.