Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.3 - The Integral Test and Estimates of Sums - 11.3 Exercises - Page 726: 29

Answer

Convergent with $p\gt 1$

Work Step by Step

For $p\gt 1$ $\int_{2}^{\infty}\frac{1}{x(lnx)^{p}}dx=[\frac{1}{(1-p)(lnx)^{p-1}}]_{2}^{\infty}$ $=\frac{1}{(1-p)(ln\infty)^{p-1}}-\frac{1}{(1-p)(ln2)^{p-1}}$ $=\frac{1}{-\infty}-\frac{1}{(1-p)(ln2)^{p-1}}$ $=-\frac{1}{(1-p)(ln2)^{p-1}}$ Converges by p-series.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.