Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.3 - The Integral Test and Estimates of Sums - 11.3 Exercises - Page 726: 33

Answer

Domain : $(1,\infty)$

Work Step by Step

$\Sigma_{1}^{\infty}\frac{1}{n^{x}}=\int_{1}^{\infty}\frac{1}{t^{x}}dt$ when $x=1$ ; $\int_{1}^{\infty}\frac{1}{t^{x}}dt=\int_{1}^{\infty}\frac{1}{t}dt=lnt|_{1}^{\infty}=\infty$ when $0\lt x \lt 1$ ; $\int_{1}^{\infty}\frac{1}{t^{x}}dt=\frac{1}{1-x}[t^{(1-x)}|_{1}^{\infty}=\infty$ when $x \gt 1$ ; $\int_{1}^{\infty}\frac{1}{t^{x}}dt=\frac{1}{1-x}[t^{(1-x)}|_{1}^{\infty}=\frac{1}{1-x}(-1)=\frac{1}{x-1}$ Hence, the given function is defined when $x \gt 1$ Thus, Domain : $(1,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.