Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.3 - The Integral Test and Estimates of Sums - 11.3 Exercises - Page 726: 34

Answer

(a) $\frac{\pi^{2}-6}{6}$ (b) $\frac{6\pi^{2}-49}{36}$ (c)$ \frac{\pi^{2}}{24}$

Work Step by Step

(a) $\Sigma_{n=2}^{\infty}\frac{1}{n^{2}}=\frac{\pi^{2}}{6}-\frac{1}{1^{2}}=\frac{\pi^{2}-6}{6}$ (b) $\Sigma_{n=3}^{\infty}\frac{1}{(n+1)^{2}}=\Sigma_{n=4}^{\infty}\frac{1}{n^{2}}=\frac{\pi^{2}}{6}-1-\frac{1}{4}-\frac{1}{9}=\frac{6\pi^{2}-49}{36}$ (c) $\Sigma_{n=1}^{\infty}\frac{1}{(2n)^{2}}=\Sigma_{n=1}^{\infty}\frac{1}{4n^{2}}=\frac{1}{4} \cdot \frac{\pi^{2}}{6}=\frac{\pi^{2}}{24}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.