Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.3 - Polar Coordinates - 10.3 Exercises - Page 667: 60

Answer

The slope of the tangent line is $~\frac{\sqrt{3}}{9}$

Work Step by Step

$r = 1+2~cos~\theta$ $x = r~cos~\theta = (1+2~cos~\theta)~(cos~\theta)$ $y = r~sin~\theta = (1+2~cos~\theta)~(sin~\theta)$ We can find $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-2~sin^2~\theta+cos~\theta+2~cos^2~\theta}{-2~sin~\theta~cos~\theta-sin~\theta-2~sin~\theta~cos~\theta} = \frac{2~sin^2~\theta-cos~\theta-2~cos^2~\theta}{4~sin~\theta~cos~\theta+sin~\theta}$ When $\theta = \frac{\pi}{3}$: $\frac{dy}{dx} =\frac{2~sin^2~\frac{\pi}{3}-cos~\frac{\pi}{3}-2~cos^2~\frac{\pi}{3}}{4~sin~\frac{\pi}{3}~cos~\frac{\pi}{3}+sin~\frac{\pi}{3}}$ $\frac{dy}{dx} =\frac{2~(\frac{\sqrt{3}}{2})^2-\frac{1}{2}-2~(\frac{1}{2})^2}{4~(\frac{\sqrt{3}}{2})~(\frac{1}{2})+(\frac{\sqrt{3}}{2})}$ $\frac{dy}{dx} =\frac{\frac{3}{2}-\frac{1}{2}-\frac{1}{2}}{\frac{3\sqrt{3}}{2}}$ $\frac{dy}{dx} =\frac{1}{3\sqrt{3}}$ $\frac{dy}{dx} =\frac{1}{3\sqrt{3}}\cdot \frac{\sqrt{3}}{\sqrt{3}}$ $\frac{dy}{dx} =\frac{\sqrt{3}}{9}$ The slope of the tangent line is $~\frac{\sqrt{3}}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.