Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.3 - Polar Coordinates - 10.3 Exercises - Page 667: 56

Answer

The slope of the tangent line is $~\frac{4-3\sqrt{2}}{2}$

Work Step by Step

$r = 2+sin~3\theta$ $x = r~cos~\theta = (2+sin~3\theta)~(cos~\theta)$ $y = r~sin~\theta = (2+sin~3\theta)~(sin~\theta)$ We can find $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3~cos~3\theta~sin~\theta+(2+sin~3\theta)~(cos~\theta)}{3~cos~3\theta~cos~\theta-(2+sin~3\theta)~(sin~\theta)}$ When $\theta = \frac{\pi}{4}$: $\frac{dy}{dx} =\frac{3~cos~\frac{3\pi}{4}~sin~ \frac{\pi}{4}+(2+sin~\frac{3\pi}{4})~(cos~ \frac{\pi}{4})}{3~cos~\frac{3\pi}{4}~cos~ \frac{\pi}{4}-(2+sin~ \frac{3\pi}{4})~(sin~ \frac{\pi}{4})}$ $\frac{dy}{dx} =\frac{3~(-\frac{\sqrt{2}}{2})~(\frac{\sqrt{2}}{2})+(2+\frac{\sqrt{2}}{2})~(\frac{\sqrt{2}}{2})}{3~(-\frac{\sqrt{2}}{2})~(\frac{\sqrt{2}}{2})-(2+\frac{\sqrt{2}}{2})~(\frac{\sqrt{2}}{2})}$ $\frac{dy}{dx} =\frac{-\frac{3}{2}+\sqrt{2}+\frac{1}{2}}{-\frac{3}{2}-\sqrt{2}-\frac{1}{2}}$ $\frac{dy}{dx} =\frac{1-\sqrt{2}}{2+\sqrt{2}}$ $\frac{dy}{dx} =\frac{1-\sqrt{2}}{2+\sqrt{2}}\cdot \frac{2-\sqrt{2}}{2-\sqrt{2}}$ $\frac{dy}{dx} =\frac{4-3\sqrt{2}}{2}$ The slope of the tangent line is $~\frac{4-3\sqrt{2}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.