Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.3 - Polar Coordinates - 10.3 Exercises - Page 667: 55

Answer

The slope of the tangent line is $\frac{1}{\sqrt{3}}$

Work Step by Step

$r = 2~cos~\theta$ $x = r~cos~\theta = 2~cos^2~\theta$ $y = r~sin~\theta = 2~sin~\theta~ cos~\theta$ We can find $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2cos^2~\theta-2sin^2~\theta}{-4~cos~\theta~sin~\theta} = \frac{sin^2~\theta-cos^2~\theta}{2~cos~\theta~sin~\theta}$ When $\theta = \frac{\pi}{3}$: $\frac{dy}{dx} = \frac{sin^2~\theta-cos^2~\theta}{2~cos~\theta~sin~\theta}$ $\frac{dy}{dx} = \frac{sin^2~\frac{\pi}{3}-cos^2~\frac{\pi}{3}}{2~cos~\frac{\pi}{3}~sin~\frac{\pi}{3}}$ $\frac{dy}{dx} = \frac{(\frac{\sqrt{3}}{2})^2-(\frac{1}{2})^2}{2~(\frac{1}{2})~(\frac{\sqrt{3}}{2})}$ $\frac{dy}{dx} = \frac{\frac{3}{4}-\frac{1}{4}}{\frac{\sqrt{3}}{2}}$ $\frac{dy}{dx} = \frac{1}{\sqrt{3}}$ The slope of the tangent line is $\frac{1}{\sqrt{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.