Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.3 - Polar Coordinates - 10.3 Exercises - Page 667: 59

Answer

The slope of the tangent line is $~1$

Work Step by Step

$r = cos~2\theta$ $x = r~cos~\theta = cos~2\theta~cos~\theta$ $y = r~sin~\theta = cos~2\theta~sin~\theta$ We can find $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-2~sin~2\theta~sin~\theta+cos~2\theta~cos~\theta}{-2~sin~2\theta~cos~\theta-cos~2\theta~sin~\theta}$ When $\theta = \frac{\pi}{4}$: $\frac{dy}{dx} = \frac{-2~sin~\frac{\pi}{2}~sin~\frac{\pi}{4}+cos~\frac{\pi}{2}~cos~\frac{\pi}{4}}{-2~sin~\frac{\pi}{2}~cos~\frac{\pi}{4}-cos~\frac{\pi}{2}~sin~\frac{\pi}{4}}$ $\frac{dy}{dx} = \frac{-2(1)~(\frac{\sqrt{2}}{2})+(0)~(\frac{\sqrt{2}}{2})}{-2~(1)~(\frac{\sqrt{2}}{2})-(0)~(\frac{\sqrt{2}}{2})}$ $\frac{dy}{dx} = \frac{-\sqrt{2}}{-\sqrt{2}}$ $\frac{dy}{dx} = 1$ The slope of the tangent line is $~1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.