Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.3 - Polar Coordinates - 10.3 Exercises - Page 667: 58

Answer

The slope of the tangent line is $~-\sqrt{3}$

Work Step by Step

$r = cos~\frac{\theta}{3}$ $x = r~cos~\theta = cos~\frac{\theta}{3}~cos~\theta$ $y = r~sin~\theta = cos~\frac{\theta}{3}~sin~\theta$ We can find $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-\frac{1}{3}~sin~\frac{\theta}{3}~sin~\theta+cos~\frac{\theta}{3}~cos~\theta}{-\frac{1}{3}~sin~\frac{\theta}{3}~cos~\theta-cos~\frac{\theta}{3}~sin~\theta}$ When $\theta = \pi$: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-\frac{1}{3}~sin~\frac{\pi}{3}~sin~\pi+cos~\frac{\pi}{3}~cos~\pi}{-\frac{1}{3}~sin~\frac{\pi}{3}~cos~\pi-cos~\frac{\pi}{3}~sin~\pi}$ $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-\frac{1}{3}~(\frac{\sqrt{3}}{2})~(0)+( \frac{1}{2})~(-1)}{-\frac{1}{3}~(\frac{\sqrt{3}}{2})~(-1)-( \frac{1}{2})~(0)}$ $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{6}}$ $\frac{dy}{dx} =\frac{-3}{\sqrt{3}}$ $\frac{dy}{dx} =-\sqrt{3}$ The slope of the tangent line is $~-\sqrt{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.