Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.3 - Polar Coordinates - 10.3 Exercises - Page 667: 57

Answer

The slope of the tangent line is $~-\pi$

Work Step by Step

$r = \frac{1}{\theta}$ $x = r~cos~\theta = \frac{cos~\theta}{\theta}$ $y = r~sin~\theta = \frac{sin~\theta}{\theta}$ We can find $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{\theta~cos~\theta-sin~\theta}{\theta^2}}{\frac{-\theta~sin~\theta-cos~\theta}{\theta^2}} = \frac{sin~\theta-\theta~cos~\theta}{\theta~sin~\theta+cos~\theta}$ When $\theta = \pi$: $\frac{dy}{dx} = \frac{sin~\pi-\pi~cos~\pi}{\pi~sin~\pi+cos~\pi}$ $\frac{dy}{dx} = \frac{0-\pi~(-1)}{\pi~(0)+(-1)}$ $\frac{dy}{dx} = \frac{\pi}{-1}$ $\frac{dy}{dx} = -\pi$ The slope of the tangent line is $~-\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.