Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.8 Newton's Method - 4.8 Exercises - Page 316: 9

Answer

\[\boxed{\begin{array}{*{20}{c}} n&{{x_n}} \\ 0&{4.000000} \\ 1&{3.250000} \\ 2&{3.163462} \\ 3&{3.162278} \\ 4&{3.162278} \\ 5&{3.162278} \\ 6&{3.162278} \\ 7&{3.162278} \\ 8&{3.162278} \\ 9&{3.162278} \\ {10}&{3.162278} \end{array}}\]

Work Step by Step

\[\begin{gathered} {\text{Let }}f\left( x \right) = {x^2} - 10,{\text{ and }}{x_0} = 4 \hfill \\ {\text{Using the Newton's Method }}{x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}} \hfill \\ f'\left( x \right) = 2{x_n} \hfill \\ {\text{Then evaluating }}f\left( {{x_n}} \right){\text{ and }}f'\left( {{x_n}} \right) \hfill \\ {x_{n + 1}} = {x_n} - \frac{{x_n^2 - 10}}{{2{x_n}}} \hfill \\ \hfill \\ {\text{Taking }}{x_0} = 4 \hfill \\ {x_0} = 4 \hfill \\ {x_{0 + 1}} = {x_1} = 4 - \frac{{{{\left( 4 \right)}^2} - 10}}{{2\left( 4 \right)}} = 3.25 \hfill \\ {x_{1 + 1}} = {x_2} = 3.25 - \frac{{{{\left( {3.25} \right)}^2} - 10}}{{2\left( {3.25} \right)}} \approx 3.163462 \hfill \\ {x_{1 + 2}} = {x_3} = 3.163462 - \frac{{{{\left( {3.163462} \right)}^2} - 10}}{{2\left( {3.163462} \right)}} \approx 3.162277 \hfill \\ {x_{1 + 3}} = {x_4} = 3.162278 - \frac{{{{\left( {3.162278} \right)}^2} - 10}}{{2\left( {3.162278} \right)}} \approx 3.162278 \hfill \\ {x_{1 + 4}} = {x_5} = 3.162278 - \frac{{{{\left( {3.162278} \right)}^2} - 10}}{{2\left( {3.162278} \right)}} \approx 3.162278 \hfill \\ {x_{1 + 5}} = {x_6} = 3.162278 - \frac{{{{\left( {3.162278} \right)}^2} - 10}}{{2\left( {3.162278} \right)}} \approx 3.162278 \hfill \\ {x_{1 + 6}} = {x_7} = 3.162278 - \frac{{{{\left( {3.162278} \right)}^2} - 10}}{{2\left( {3.162278} \right)}} \approx 3.162278 \hfill \\ {x_{1 + 7}} = {x_8} = 3.162278 - \frac{{{{\left( {3.162278} \right)}^2} - 10}}{{2\left( {3.162278} \right)}} \approx 3.162278 \hfill \\ {x_{1 + 8}} = {x_9} = 3.162278 - \frac{{{{\left( {3.162278} \right)}^2} - 10}}{{2\left( {3.162278} \right)}} \approx 3.162278 \hfill \\ {x_{1 + 9}} = {x_{10}} = 3.162278 - \frac{{{{\left( {3.162278} \right)}^2} - 10}}{{2\left( {3.162278} \right)}} \approx 3.162278 \hfill \\ \hfill \\ {\text{Thus}}{\text{, we obtain}} \hfill \\ \boxed{\begin{array}{*{20}{c}} n&{{x_n}} \\ 0&{4.000000} \\ 1&{3.250000} \\ 2&{3.163462} \\ 3&{3.162278} \\ 4&{3.162278} \\ 5&{3.162278} \\ 6&{3.162278} \\ 7&{3.162278} \\ 8&{3.162278} \\ 9&{3.162278} \\ {10}&{3.162278} \end{array}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.