Answer
$$x \approx 1.465571$$
Work Step by Step
$$\eqalign{
& y = {x^3},{\text{ }}y = {x^2} + 1 \cr
& {\text{The graphs of the functions are shown below}} \cr
& \cr
& {\text{Find the intersection points}}{\text{, let }}y = y \cr
& {x^3} = {x^2} + 1 \cr
& {\text{Subtract }}{x^2} + 1{\text{ from both sides of equation to write the functions}} \cr
& {\text{in the form }}f\left( x \right) = g\left( x \right) - h\left( x \right) = 0 \cr
& f\left( x \right) = 0 \cr
& {x^3} - {x^2} - 1 = 0 \cr
& {\text{Let }}f\left( x \right) = {x^3} - {x^2} - 1,{\text{ differentiating}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^3} - {x^2} - 1} \right] \cr
& f'\left( x \right) = 3{x^2} - 2x \cr
& {\text{Use the procedure Newton's Method for Approximations}} \cr
& {\text{Roots of }}f\left( x \right) = 0{\text{ }}\left( {{\text{See page 311}}} \right) \cr
& {x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}} \cr
& {\text{Substituting }}f\left( {{x_n}} \right){\text{ and }}f'\left( {{x_n}} \right){\text{ the Newton's method takes the}} \cr
& {\text{form}} \cr
& {x_{n + 1}} = {x_n} - \frac{{x_n^3 - x_n^2 - 1}}{{3x_n^2 - 2{x_n}}} \cr
& {\text{From the graph we can see that the first possible initial }} \cr
& {\text{approximation is }}x = 1 \cr
& {\text{Therefore}}{\text{,}} \cr
& n = 0,{\text{ }}{x_0} = 1 \cr
& {x_1} \approx 1 - \frac{{{{\left( 1 \right)}^3} - {{\left( 1 \right)}^2} - 1}}{{3{{\left( 1 \right)}^2} - 2\left( 1 \right)}} \approx 2 \cr
& n = 1,{\text{ }}{x_1} = 2 \cr
& {x_2} \approx 1 - \frac{{{{\left( 2 \right)}^3} - {{\left( 2 \right)}^2} - 1}}{{3{{\left( 2 \right)}^2} - 2\left( 2 \right)}} \approx 1.625 \cr
& n = 2,{\text{ }}{x_2} = 1.625 \cr
& {x_3} \approx 1.625 - \frac{{{{\left( {1.625} \right)}^3} - {{\left( {1.625} \right)}^2} - 1}}{{3{{\left( {1.625} \right)}^2} - 2\left( {1.625} \right)}} \approx 1.485785 \cr
& n = 3,{\text{ }}{x_2} = 1.485785 \cr
& {x_4} \approx 1.485785 - \frac{{{{\left( {1.485785} \right)}^3} - {{\left( {1.485785} \right)}^2} - 1}}{{3{{\left( {1.485785} \right)}^2} - 2\left( {1.485785} \right)}} \cr
& {x_4} \approx 1.465955 \cr
& n = 4,{\text{ }}{x_2} = 1.465955 \cr
& {x_5} \approx 1.465955 - \frac{{{{\left( {1.465955} \right)}^3} - {{\left( {1.465955} \right)}^2} - 1}}{{3{{\left( {1.465955} \right)}^2} - 2\left( {1.465955} \right)}} \cr
& {x_5} \approx 1.465571 \cr
& \cr
& {\text{The approximation of the solutions is:}} \cr
& x \approx 1.465571 \cr} $$