Answer
$${x_1} \approx 6.100986,{\text{ }}{x_2} \approx 6.762697$$
Work Step by Step
$$\eqalign{
& f\left( x \right) = \frac{x}{6} - \sec x{\text{ on }}\left[ {0.8} \right] \cr
& f\left( x \right) = 0 \cr
& \frac{x}{6} - \sec x = 0 \cr
& {\text{Differentiating}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{x}{6} - \sec x} \right] \cr
& f'\left( x \right) = \frac{1}{6} - \sec x\tan x \cr
& {\text{Use the procedure Newton's Method for Approximations}} \cr
& {\text{Roots of }}f\left( x \right) = 0{\text{ }}\left( {{\text{See page 311}}} \right) \cr
& {x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}} \cr
& {\text{Substituting }}f\left( {{x_n}} \right){\text{ and }}f'\left( {{x_n}} \right){\text{ the Newton's method takes the}} \cr
& {\text{form}} \cr
& {x_{n + 1}} = {x_n} - \frac{{\frac{{{x_n}}}{6} - \sec {x_n}}}{{\frac{1}{6} - \sec {x_n}\tan {x_n}}} \cr
& {x_{n + 1}} = {x_n} - \frac{{{x_n} - 6\sec {x_n}}}{{1 - 6\sec {x_n}\tan {x_n}}} \cr
& {\text{From the graph we can see that the first possible initial }} \cr
& {\text{approximation is }}x = 6 \cr
& {\text{Therefore}}{\text{,}} \cr
& n = 0,{\text{ }}{x_0} = 6 \cr
& {x_1} = 6 - \frac{{6 - 6\sec 6}}{{1 - 6\sec 6\tan 6}} \approx 6.092991 \cr
& {\text{Computing the same calculation we obtain:}}{\text{.}} \cr
& {x_2} \approx 6.101045 \cr
& {x_3} \approx 6.100985 \cr
& {x_4} \approx 6.100986 \cr
& {x_6} \approx 6.100986 \cr
& \cr
& {\text{From the graph we can see that the second possible initial }} \cr
& {\text{approximation is }}x = 7 \cr
& {\text{Therefore}}{\text{,}} \cr
& {x_1} = 7 - \frac{{7 - 6\sec 7}}{{1 - 6\sec 7\tan 7}} \approx 6.674161 \cr
& {\text{Computing the same calculation we obtain:}}{\text{.}} \cr
& {x_2} \approx 6.817514 \cr
& {x_3} \approx 6.742460 \cr
& {x_4} \approx 6.771877 \cr
& {x_6} \approx 6.758919 \cr
& {x_6} \approx 6.764317 \cr
& {x_7} \approx 6.762016 \cr
& {x_8} \approx 6.762695 \cr
& {x_8} \approx 6.762697 \cr
& {\text{The approximation of the roots are:}} \cr
& {x_1} \approx 6.100986,{\text{ }}{x_2} \approx 6.762697 \cr} $$