Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.8 Newton's Method - 4.8 Exercises - Page 316: 4

Answer

$${x_{n + 1}} = \frac{{x_n^2 + 5}}{{2{x_n}}}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = {x^2} - 5 \cr & {\text{Differentiate the given function}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^2} - 5} \right] \cr & f'\left( x \right) = 2x \cr & {\text{Use the procedure Newton's Method for Approximations}} \cr & {\text{Roots of }}f\left( x \right) = 0{\text{ }}\left( {{\text{See page 311}}} \right) \cr & {x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}} \cr & {\text{Substituting }}f\left( {{x_n}} \right){\text{ and }}f'\left( {{x_n}} \right){\text{ the Newton's method takes the}} \cr & {\text{form}} \cr & {x_{n + 1}} = {x_n} - \frac{{{{\left( {{x_n}} \right)}^2} - 5}}{{2\left( {{x_n}} \right)}} \cr & {\text{Simplifying}} \cr & {x_{n + 1}} = \frac{{2{{\left( {{x_n}} \right)}^2} - {{\left( {{x_n}} \right)}^2} + 5}}{{2{x_n}}} \cr & {x_{n + 1}} = \frac{{2x_n^2 - x_n^2 + 5}}{{2{x_n}}} \cr & {x_{n + 1}} = \frac{{x_n^2 + 5}}{{2{x_n}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.